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Bounds are obtained on the unintegrated density of states p(E) of random 
Schr6dinger operators H =  - A  + V acting on L2(N a) or 12(Za). In both cases 
the random potential is 

V :=  ~ V,.)~(A(y)) 
.~EZ d 

in which the { V,},,~ ~, are I1D random variables with density f The X denotes 
indicator function, and in the continuum case the {A(y)}v~z, are cells of unit 
dimensions centered on y ~ Z'( In the finite-difference case A(y) denotes the site 
y c Y a itself. Under the assumption . fc L~ +':(~) it is proven that in the finite- 
difference case p ~ L"~([~), and that in the d =  1 continuum case p ~ L~(N) .  
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1. I N T R O D U C T I O N  

In the last few years, random Schr6dinger operators have received rigorous 
mathematical treatment. Such operators are of the form H =  - A  + V and 
act on either 12(Y_ d) or L2(2d), with A being, respectively, the finite- 
difference or the continuum Laplacian. The potential is defined to be 

v(.) := Z 
x c Z  d 

in which ZA(xl denotes the indicator function of the set A(x). In the finite- 
difference case A(x) means the site x ~ z d ;  in the continuum case, the 
hybercubic cell of unit dimensions centered at x. Henceforth the { Vx}x~ z~ 
will be taken to be independent, identically distributed random variables, 
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each with distribution f(V)dV. I assume that the density f exists as a 
function. 

Results on the finite-difference case include results on the falloff of the 
Green's function ( z -H) - l ( x ,  y) as I x - y J  ~ oo, (2) and on the bounded- 
ness of the unintegrated density of states (DOS) of H. (5) In this paper I 
report on a considerable extension of the previously obtained bounds on 
the DOS. The new bounds are obtained by a novel technique involving 
integration over the isospectral varieties of spatially cutoff versions of H, 
introduced in Section 2. They are stated in Theorem 1 of Section 3 and 
Theorem 2 of Section 4. The first deals with the finite-difference case; the 
latter, with the d =  1 continuum case. In both cases it is proven that the 
DOS is bounded i f feL~+~(N) .  

2. THE DENSITY  OF STATES A N D  ITS INTEGRAL 
R E P R E S E N T A T I O N  

To begin with, recall how the DOS is defined. The following 
definitions apply to both the finite-difference and continuum cases. 

If A c Z a, define A by 

I A finite-difference case 

2 := (J A(y) continuum case 
y e A  

and let H A be the finite-volume restriction of H to A. In the finite-difference 
case, H A := )(~Hx~; in the continuum case one can take HA := -A~.~ + V, 
with the Laplacian given Dirichlet boundary conditions on 8A. For every 
o-eX, the class of Borel subsets of N, define P(H; ~) and P(HA; ~) to be 
the spectral projections of H and H A on or. The DOS measure associated to 
the volume A is then defined to be the random measure 

NA(') := IA1-1 tr P(HA; .) 

This measure is purely atomic, with an atom at every eigenvalue of HA. In 
the finite-difference case NA(" ) has total mass unity. 

It is a consequence of the ergodicity of translations on the underlying 
probability space (3) that if ~ ~ X is sufficiently nice, 

lira NA(a) 
A T ~  d 

exists almost surely and in expectation, and is independent of the choice of 
A 1" yd. Moreover, this limit equals 

tr[ZA(o)P(H; a) ZA(O)] 
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if d' denotes expectation. The infinite-volume DOS measure N(.) is accor- 
dingly defined to be the nonrandom Borel measure 

o~ tr[ZA(o)P(H; " ) ZA(o)] 

It contains no pure point component, (1) and by ergodicity (6) its support lies 
within s u p p ( - A ) + s u p p f .  It will be written as p(E)dE. We call p( . )  
the infinite-volume DOS, or simply the DOS. It exists a priori only as a 
distribution, but under weak hypotheses may be shown to be a function as 
follows. 

The averaged finite-volume DOS measures NNA(" ) are absolutely con- 
tinuous if f is, and may be written as gpA(E)dE. The gPA(') may be ter- 
med the average finite-volume DOSs; they necessarily exist as functions. If 
HSPA I] co is bounded uniformly in A, then by the A 1" 2U convergence of o~NA 
to p(E)dE, p will exist as a function and obey the same L ~ bound. The 
fact that ]]~PA]I~z is under weak hypotheses bounded uniformly in A is a 
new result of this paper, stated in Theorems 1' and 2'. 

I shall prove these theorems with the aid of an easily understood, but 
little known integral representation for gPA('). If E~  JR, define a random 
surface 5 ~  ~ NA by 

5 pA := {V~IRAIEEa(HA)} (1) 

In the finite-difference case, 5P~ is an algebraic variety, but in the con- 
tinuum case it is analytic rather than algebraic. It could be termed an 
"isoeigenvalue surface," for it is the closest thing to an isospectral manifold 
that can be defined in the space NA of potentials on A. At all points on it, 
H A = HA(_V ) has an eigenvalue at E. Degenerate eigenvalues give rise to 
self-intersections, so 5 fA is not in general an embedded submanifold of NA. 

Wegner (5) observed that O~pA(E) can be expressed as an integral over 
5P~. To see this, regard the integrated DOS N A ( [ E  , E +  6)) as a random 
variable on the probability space (RA, ~[xeAf(Vx)dVx)" Its expectation 
~ N A ( [ E  , E +  6])  equals 

IA]- l f  nA([E,E+5))({_V}x~A) 1~ f(Vx) (1.5) 
V~  R A - x ~ A  

in which n A ( [ E  , E +  6)) is the number of eigenvalues of --Ax.e + f l y i n g  in 
[E, E +  6), namely the number of times the line segment extending from _V 
to U+6(1,.. . ,  1) in NA intersects 5 ~A. The differential version of (1.5) 
therefore expresses Spa(E), the density of gNA(-), as an integral over ym: 

EpA(E)=IAI-l f t(1,..., 1)'_N(_V)I 1-[ f(Vx) dA 

822/48/3-4-5 
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Here dA is surface area on 5~A e, and _N(_V) is the unit normal to 5 eA at _ V. 
We define e := [At - i l l  ..... 1) so that 

= f ~ exNx I] i (Vx) dA = f e l]  f(Vx) N~A(_V ) 
NpA(E) Vey~ xeA x~a v~9~ 

(2) 

in which the surface measure d#a(_V):= Le. _N(_V)I dA. 
Note that by first-order Rayleigh-Schr6dinger perturbation theory, if 

~(. ) is the eigenfunction of H A = HA(V) with eigenvalue E, then at _Ve 5 ~  
the components Ny of the unit normal _N to 5 eA are proportional to 

10 (Y)[ z finite-difference case 

(2.5) 
fA 14,(X)I 2 dx continuum case 

(y) 

As these components are nonnegative, we shall in the sequel drop the 
absolute value signs from the definition of the surface measure d#A(V), and 
write dp A( V) = e . _N(_V) dA. 

3. RESULTS IN THE F IN ITE-DIFFERENCE CASE 

For pedagogical purposes, consider the simple case of A = {xl, X2}, 
for xl ,  x2 adjacent sites in Z a. Our finite-difference Laplacian A is defined 
to have matrix elements 

A(x, y)= {~ ( x -  y, = l 
otherwise 

and has spectrum a(A) = [ - 2 d ,  2d]. So, by definition, 5z~xl,x2} c R2 is the 
set of (Vx~, V~2 ) for which the matrix H{x~.x2}, i.e., 

has eigenvalue E. This subset of R2 is a hyperbola. (Indeed, so is the inter- 
section of any isoeigenvalue surface 5z~ with a two-dimensional hyperplane 
parallel to two of the coordinate axes in RA.) Also, 

5z~ = E(1, 1 ) + ~ J  

So the representation (2) implies 

~p{xl,x2}(E)=fs~{r f (Vx~-E) f (Vx2-E)d#(_V)  (3) 
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Proposition 1. Let A comprise two adjacent sites, and suppose 
f ~  L2(N) and supp f c  [ - C ,  C]. Then for some constant c(C), gPA(E)<<. 
c(C) IIflj 2 for all E. 

Proof. On any compact subset of a hyperbola, the two components 
N~I and N~2 of the unit normal vector are bounded away from zero. In par- 
ticular, on J 0  {~,x2~ c~ [ - C ,  C] 2, Nx~ and N~2 are bounded below by some 
~(c)  > o. 

So, if one writes (3) as an integral with respect to Vx~, i.e., 

f f(wx,- E) f(V 2(Vx )- E) J(Vx~) dVx, 

the Jacobian factor J(VXl) = 1 -[-NXl N~21 [i.e., dl2(_V)/dV~] will be bounded 
by 1 + y -  1 on the interval - C ~ Vx~ ~< C. Moreover, on this interval the L 2 
norm o f f (  1/~2(-)- E) will be bounded by 

sup (N~Nx2) IlfJI2~<7 * JJfll2 

So the proposition holds by the Schwartz inequality, with 
c = 7 - 1 + ~  2. I 

What is the meaning of Proposition 1? Equation (3) expresses 
Ep{x.x2}(E) as a twisted convolution of f with itself. Proposition 1 is 
therefore analogous to I[ f * f [J oo ~ J] f [[ 22, which holds for the conventional 
convolution . .  

In general, (2) expresses gpA(E) as a ]Al-fold twisted convolution o f f  
with itself. But a special case of Young's inequality (4) states that r[ f*Pll  co ~< 
It f rf P,, in which p '  := (1 - p -  l ) -  1. So one would expect that for arbitrarily 
small e > 0, if A is sufficiently large, then II~pA (-)1[ oo could bc bounded in 
terms of tl f II 1 + ~- In other words, increasing the size of A should eventually 
smooth gPA into an L ~ function, even if f is only L l +L This smoothing is 
the subject of the following theorem, the finite-difference half of the 
principal result of this paper. 

T h e o r e m  1. Suppose s u p p f c [ - C , C ] .  In the finite-difference 
case, for all integral p~> 1, there exists a constant cp=cp(C) such that 
[Ipllo~ ~<c~ I1 f Jl~,, p '  :-- (1 _ p - , ) - l .  

Remark. This theorem generalizes the above-mentioned result of 
Wegner, (5) who proved ][Pll oo ~< I[f]l ~ (i.e., t hep  = 1 case of the theorem) in 
the finite-difference case. Note that by the above-mentioned result of Kunz 
and SouiUard, (6) supp p c [ - C - 2d, C + 2d]. 
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ProoL As stated, it suffices to show that the bounds on p hold with p 
replaced by gp~, for A arbitrarily large, i.e., that the following theorem 
holds. 

T h e o r e m  1'. Suppose supp f c E -  C, C]. For  all integral p >~ 1 one 
can choose a sequence {A(N; p)}~= 1 of boxes converging to Z a such that 
for some Cp = cp(C), 

IlgPa(N;plhloo,E_C_2d, C+2dl~Cp IlfllPp, for all N 

Remark. For ease of understanding I shall prove the p = 2 case first. 
The proof resembles the above ]A[ = 2 treatment. 

Proof of Theorem 1', p = 2 case. The proof will write the integral 
over S eA for g p ,  in terms of the integrals over the plane curves that are the 
intersections of SeA. with two-dimensional hyperplanes parallel to the coor- 
dinate axes. The following lemmas will be used to bound these integrals. 

L e m m a  1. Let Se be a differentiable curve in R 2. Suppose that: (i) 
the unit normal to Se has both components nonnegative and bounded 
below by fl > 0. (ii) S intersects any line parallel to either coordinate axis at 
most k times. 

Then there exists a constant c = c(fl) such that 

fv~,~f(V~)f(V2) g(_V)dl<<.kc Ilfll 2 LIgLI~ (4) 

Remark. This lemma was implicitly used in the proof of Proposition 
1. There k = 1, as Se was a hyperbola aligned with the coordinate axes. 

L e m m a  2. For some fl(C, d)>O and some finite set A ; c H  the 
following is true. If A 0 c A is congruent to A; and ~ is an eigenfunction of 
HA with eigenvalue E ~ [ - C - 2 d ,  C+2d] ,  then there exist sites x~, 
x2 e Ao such that ttPAo(Xk)l >~ fi, k = 1, 2. Here ~A0 denotes the normalized 
(in the l 2 sense) restriction of ~ to A o. 

Remark. By first-order Rayleigh-Schr6dinger perturbation theory, 
the 2-vector ([~A0(Xl)I 2, IOA0(X2)[ 2) is normal to the plane curve obtained 
by intersecting SeA with the two-dimensional hyperplane of fixed 
{ V(x)}x~A,~ex,.x2. This justifies the detailed study of I~'1 ( ) .  

Proof of  Lemma 2. The A~) of the lemma will be chosen to satisfy the 
following adjacency condition: for all z e A~, there exists y ~ Ao\c~A'o such 
that l Y - z l  = 1. Here 8A~ denotes the set of boundary sites of A~, i.e., those 
distant by exactly one unit from a site in Za \A ; .  
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Assume that the lemma were false, i.e., that for an eigenfunction O of 
HA, OA0 could be arbitrarily concentrated on some site z eA o .  That is, 
OAo(Z) could be arbitrarily close to 1. By choice there exists y~Ao\~3A o 
such that I T - z l  = 1. The eigenvalue equation then implies 

t / I A o ( Y  ) = ( V y  - -  E) -1 ~' tPAo(X ) 
Ix -- Yl = 1 

But of the 2 a terms in this summation, one will be OAo(Z). AS I V y - E l - ~  >i 
(2C + 2d)-1, on at least one of the 2 a elements of {xl x # z, I x - Y r  = 1 } u 
{Y}, J~'A0(')[ would take on a value greater than some /~(C,d)>0.  This 
would contradict the assumption. 

Our adjacency condition on A~ may be satisfied by choosing 

A~ := {_xeZdl l ~<x:~<4 and x : =  1 or 4 for at most one j} 

For example, if d =  l, then A~ could be an interval of four consecutive 
sites. | 

Given the set A~ of Lemma 2, choose A ( N ; p )  to be a box 
A := UN 1 A:, i.e., a connected union of N translates of A6. The union need 
not be disjoint, but I shall require 

IAI > ~I N IA'ol (5) 

for some ~1 > O. 

D e f i n i t i o n .  If A ~ A and { Vx ~sxEA\A are specified, one defines 5 :A,A 
to be the intersection of 5 :A with the [A [-dimensional hyperplane in ~A of 
fixed { Vx } x ~ A \ A" One can regard yA.A as a { Vx } ~ ~ A \ A-dependent surface 
in ~A. 

The particular form of the surface measure d/t(_V) in (2), i.e., e . N d A ,  
allows a powerful change of variables. If N X # 0 for at least one x ~ A, then 
the unit normal to 5 :A,A in ~A will be defined and equal 

So if A ~ A, equip 5:~ ,A with surface measure 

clgA(_V) = f e A . n dA if Nx # O for some x E A (5.5) 
otherwise 
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in which e A = IAI-1(1 ..... l ) ~  R A. Then, if A =-~)~=IA (j) (a disjoint union), 
Eq. (2) may be rewritten as 

M ]A(j)] 
E_ -?jT- f(V:)dVz rl , ~ A , , ,  (6) 

in which d# (As) has been written as dl ~(s). This is because the Jacobian factor 

aA ~J~(V) I7.,~ ~ ~ A~> <iv_ - 2 N~ 
- -  ~ ~ y ~ All) 

when multiplying the ~xr162 exN< terms in (2), gives 

IA~'I 
IAI _eAj-_n 

which is precisely the factor in (6). This is true for all j, and the summation 
over j  exhausts the terms in (2). 

As A N = ~ =  ~ Aj (a not necessarily disjoint union), the equality (6) is 
replaced by an inequality, due to double counting of the contributions from 
sites in more than one A (.j). We have 

t N ~< ]Ao] 

�9 : ~ A \ A ?  - ~"  ~ . v ~ A j  

NIA;} sup sup f I~ f(Vv) clPCJl(V) 
]A-~- - - ( - - I<~]<~N V e ~ A , \ A  / V c ~ f A ,  Aj - - 

- �9 y ~ A /  

~c~1-1 sup sup f ~ j  1-I f(Vy)dp(J)(- V) 
I ~ j ~ N  V e N A \ A j  V E ,  E' y ~ A )  

(7) 

In the final inequality I have used the assumption (5) on A. 
The integral over 5 ~ , 4  in (5) must now be estimated, The unit normal 

to yA,A~ in R At is, by first-order perturbation theory, proportional to ]~As[ 2. 
Lemma 1 implies that at all points on 5P~:'AJ C~ [supp f ]  Aj at least two com- 
ponents of this unit normal, say nx~ and n.<2, are bounded away from zero 
by 32(C, d ) >  0. So write 5gA.Aj n [supp f]Aj a s  a disjoint union of at most 
(1~1) surfaces T A,Aj,{xbx2} in ~Aj on which nxl and n~2 are bounded away 
from zero by [12(C, d), i.e., 

5CA, As ~ [supp f]Aj = ~) TA,~j, {x~.x2) 
Xl ~ X 2 E  A j  

Integrals over the TAE'~ "l~'x2) may be bounded by Lemma 1. To see 
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that this is possible, change variables. The intersection of T A'Aj'{xbx2} with 
any hyperplane of specified { Vw}w+~,x2 is a subset of 5+'~ ' ~ ' ' ~ .  So, by a 
change of variables, the integral 

fv~ r~,~J,{~,x~} I-[ f(Vj) dtt(J)(y) 
- y E  Aj 

may be written as 

f 1-[ f(V~)dV~f( f(V~)f(V~2 ) 
u' E Ai l~Vl '  V r 2 )  ~ "9~ { x l '  "v2 } 

',4' :/: x I , .v2 

x J x l , x 2 ( V x  I , V x 2 ;  { V w } w T a X l , X 2  ) d l  (8) 

in which ~A.lxl,~2l is regarded as a {Vw}~.x,,_~2-dependent curve in 
N{~,,x~} ~ 0~2, and dl is arc length. Here J**,xg(Vx,, Vx2; {Vw}w#x~.x2) is a 
Jacobian factor on 5 ea,{x',x~. In terms of the unit normal vector n(_V) to 
T A'A''[xI"':2} ~ I - C ,  C] a' in NAj, it equals 

[Afl-,(n 2 4_rt2 )-1/2 ~ r/x if (V,q, Vx2)ET~ ,Aj,{xl,x2} 
x l  - -  x 2 ~  

x E A j  

0 if (VX1 , Vx2)r "/lj'{xl'X2} 
(9) 

As the unit normal vector n has components nx,, nx2 > fl2(C, d), at all 
points (V~,, Vx2)e SeA'{'q'x2} C ~2, 

by (9). Moreover, the two-component unit normal vector m to the portion 
of the curve 5P~ ,{X~,x2} c ~2 on which the integrand of (8) is nonzero, i.e., 
~9 aA'{x~'x2} (3 TA: Aj'{x~'x2} has its two components m~, mx;> flz(c, d) as well. 
[In fact, (m,,, mx2) = (nx~, nxO/(n2 + n2x2)1/2.] So Lemma 1 applies to the 
integral (8) and yields 

~w~ r~'+' {~'~2} I-~ f(Vy) d#(S)( V) <~ kc(fl) I] f I[ ~(2fl 4) -1/2 
- y ~ A ]  

in which kc(fl) denotes the bounding constant of Lemma 1. As remarked 
above, k = 1 in the finite-difference case, for yA,{xl,x2~ is a hyperbola. 

Hence the integral over 5+~,AJ in (7) is bounded by 
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And by (7), 

gp~(E)<~ ~{x (lA2~ kc(fl)(2fl4)-'/e llfj, 2 (10) 

Therefore the desired p = 2 bound on gPA holds uniformly in N, which 
governs the size of A. The p = 2 case of Theorem 1 is proven. | 

Proof of Theorem 1', p >~ 2 case. The p/> 2 case extends the p = 2 
case. It relies on the following two lemmas, which extend Lemmas 1 and 2, 
respectively. 

L e m m a  3. Let ~ be a differentiable surface in RP. Suppose that: (i) 
The unit normal _m to ~ has all p components nonnegative and bounded 
bounded below by fi2 > 0. (ii) ~ intersects any line parallel to a coordinate 
axis at most k times. 

Then there exists a constant c = c(ti) such that 

L [-I f (Vi)  g ( f )  dA <<. kc 1[ f hi Pp, I[ eli 
j = l  

Remark. By surface is meant locally a finite union of embedded 
submanifolds of codimension one. Such a definition allows finite self- 
intersections. 

Proof. Deferred to Appendix A. 

We also have a p >~ 2 generalization of Lemma 2, as follows: 

L e m m a  4. For  some tip(C)> 0 and some finite set A'o(p)~ yd, the 
following is true. If Ao c A is congruent to A'o(p) and 0 is an eigenfunction 
of  H A with eigenvalue E E [ - C - 2 d ,  C + 2 d ] ,  then there exist sites 
xl,..., Xp ~ Ao such that [~lAo(Xk) [ ~ tip, 1 <~ k <~ p. The quantity OA0 denotes 
the normalized (in the l 2 sense) restriction of ~ to Ao. 

Proof. Deferred to Appendix B. | 

Given the set A'o(p) of Lemma 4, one chooses A to be a union of N 
translates A s of A'o(p), such that IAI > ~ IN  ]A;(p)]. Then 

e [ , ) A ( E ) ~ I  1 sup sup f ~I f(Vy)d#</t(-V) 
l<~j<~N y ~  \aj y~s~A,~ yeAj 

as in the p = 2 case. 
By first-order perturbation theory, the unit normal vector n(-) to JA,As 
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in RAJ equals I~Aj(')] 2. So by Lemma4,  the integral over 5P~'AJ may be 
written as a sum of 

terms, namely 

A ~ A j  V ~  y ~ A  I IAr =p 

Here the T A,Aj,A are defined to be surfaces in NAj on which the p com- 
ponents {nx}~A of the normal are bounded below by f12. They provide a 
disjoint partition of the relevant portion of 5PA'aJE , i.e., 

5P~ 'Aj n [supp f]Aj = Q) T A'Ai'A 
A ~ A j  
IAI = p  

By a change of variables the integrals over T A,A2,'I may be expressed in 
terms of integrals over surfaces in ~P, namely the intersections of TA'Aj'AE 
with hyperplanes of constant {V~}w~a\a. These are subsets of yA,A. The 
integral ( l l )  may thus be written as 

f I-I f (Vw)dvwf H f(V~)J~(V;{Vw}w~A\A)dA (12) 
w ~ A \ A  - V~'cFA'A x ~ A  " -- 

in which ~A,A is regarded as a { Vw}w~A\A-dependent surface in ~A..~ [Rp, 
and dA is surface area. In the sense of Lemma 3, it has k = 1 in the finite- 
difference case. For it is the solution set in ~A of the equation 
d e t ( E -  H) = 0, i.e., the zero set of a polynomial linear in each Vx. On the 
support of JA, it has exactly one intersection with any line parallel to a 
coordinate axis in ~P. 

Similarly to the p = 2  case, the Jacobian factor JA(_V, {Vw}w~A\A) 
equals 

]Afl-I nx ~ n:, if VE T~ 'AJ'A 
x ~ A j  

0 if _V(E T~ 'Aj'A 

As n~ > f12 for all x ~ A, 

JAY; { vw}~\A)  ~ (pfl~)-~/2 
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Moreover, by Lemma 4, the unit normal vector m to 5 ~  ,A in NP has its p 
components {mx}x~AOC {nx}x~A bounded below by tip2>0, So Lemma 3 
applies to the integral (12) and proves 

f rA,Aj," I--~ f(Vy)dtx(J)(-V)<<-kc(~p)Ilf l lPp ' (p f l4 ) - l l2  
I-re y c Aj 

Here c(fip) is the p-dependent bounding constant of Lemma 3. Substitution 
into (11) proves that 

A t  

(13) 

uniformly in N, i.e., in IA]. The general case of Theorem 1 is proven. I 

4. O N E - D I M E N S I O N A L  C O N T I N U U M  R E S U L T S  

The following theorem states bounds on the DOS of one-dimensional 
continuum random Schr6dinger operators which parallel those of 
Theorem 1. 

Theorem 2. Suppose s u p p f c  I - C ,  C]. In the d - - !  continuum 
case, for all integer p ~> 1 there exists a function cp(C, E), continuous in E, 
such that p(E) <~ Cp( C, E)[I f ll ~p, for all E. 

Proof. As in the finite-difference case, it suffices to show that the 
bounds on p hold with p replaced by #PA for A arbitrarily large, i.e., that 
the following theorem holds. 

T h e o r e m  2'. Suppose s u p p f ~  E - C ,  C]. In the d =  1 continuum 
case, for all integer p>~ 1 one can choose a sequence of boxes 
{A(N;p)~Y_}~ converging to Z such that for some continuous 
cp -- cp(C, E), ~PA(N;p)(E) ~ Cp I[fll p, for all N. 

Proof. The proof of Theorem 1' was so crafted as to serve equally 
well as a proof of Theorem 2'. The following discussion assumes that the 
reader has read and understood the proof of Theorem 1'. 

The isoeigenvalues surface 5P~ defined in (1) is now to be interpreted 
in terms of the continuum Hamiltonian HA := --A A.O + V(. ), which acts on 
L2(A). As a consequence, 5f~ is no longer an algebraic variety. For exam- 
ple, if IAI = 2, then 5~ will no longer be a hyperbola. 

But essentially all the case-dependent parts of the proof of Theorem 1; 
were segregated in Lemma 4. To make the proof of Theorem i '  serve as a 
proof of Theorem 2', Lemma 4 must be replaced by the following: 
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Lemma 5. For all integer p~> 1 there exist (i) tip(C, E ) > 0  con- 
tinuous, with no E dependence i fp  = 1, and (ii) a finite set A'o(p)~ 2; such 
that the following is true. If A0 ~ A is congruent to A'o(p) and ~ e L2(.~) is 
an eigenfunction of HA with eigenvalue E>~ - C ,  then there exist sites 
x~ ..... xp ~ Ao such that 

l~<k ~< p. Here ~PAo denotes the normalized (in the L 2 sense) restriction of 
to Ao. 

Proof. Deferred to Appendix C, where it is shown that an interval of 
p sites can serve as A'o(p). 

By Lemma 3 and 5, the analogue of (13) is 

~ p A ( E ) < ~  ('A'~ kc(~p(C,E))(p~)-~/2 [A'o(p)[ ,If,,Pp, (14) 

It remains only to choose k, a bound on the number of intersections of any 
line parallel to a coordinate axis in NA_ Np with the surface 5 pA,A. Of 
course 5P~ ,~ is defined as in Section 2, with A the p-element subset of A 
guaranteed to exist by Lemma 5. 

In the continuum case, there is no polynomial in the {V~}~A of 
which 5 ~A'A is the zero set, and we cannot set k = 1. But as d =  1, a tight 
bound on k can be found by explicit calculation. 

Definition. If A c A ~ Y _  a and E ~ ,  define --AJA,A; E a s  the 
Friedrichs extension of the symmetric operator - ~  on a domain 
DE c L2(.~), namely, 

~E :-- { f f f  = g ~ ff  for some g ~ CI(/I) which 

(i) is C 2 on the interiors of the cells {A(x)}x~A, with 

continuous extensions of its second derivatives to OA (x); 

(ii) obeys Dirichlet boundary conditions on A; 

(iii) satisfies ( - A  + V -  E) g = 0 on A \ A )  

Def in i t ion .  HA,A; E ".-~- --ZJ A,A;E-[-~_~y~A VyJ~A(y ). The HA,A; E iS a self- 
adjoint operator on LZ(A). 

Def in i t ion .  By 50~ ,A,E one denotes {_VE ~AIEecr(HA,A;E) ). It may 
be regarded as a { Vx)x~A\A-dependent surface in ~ A ~  ~p, like ~ . A .  
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Propos i t ion  2. ~q~,~;Ec~a,A a n d  A A AL" VE ~ E \ ~ E "  ' only if E 
N~((_V, { V ~ } ~ A \ A ) ) = O  for all x e A .  The N((_V, {Vx}x~A\ .~))  denotes the 
unit normal vector to 5 ~A c R A at the point (V, { V ~ } ~ A  \A). 

Proof. Recall that 5~ So in effect the 
proposition states that if (V, {V~}~A\A)S5~# and N~((_V, {V~}~A\~)) 
r 0 for at least one x m A, then HA,A:e will have E as an eigenvalue. 

If (_V,{V~}x~AX~)e5 pA, then HA will have an eigenfunction 
r  of eigenvalue E. By (2.5), as N~((_V, {Vx}x~A\A))#0 for at 
least one x ~ A ,  its restriction r  ~-# will have positive norm in L2(.#). 
Moreover, it will lie in ~e. So r  [" z~ is in the domain of - A  ~,~;e and 
satisfies H A.A;etp e = EgJ e. | 

As far as Eq. (11) and its successors are concerned, Proposition 2 
implies that 5 PA,A can be replaced by 5 pA,A;F. For, by the definition (5.5) of 

~A,A  QgA,A;If\C~PA,A is assigned measure zero. surface measure on e , ~ e  , ~ E  
This replacement of 5P~ 'A by 5 ~  ,A;E aids in choosing the bound k. If ['l 

denotes cardinality, we may choose 

k ~ > m a x  sup 
xsA Vy, y,~x 

A A'E I { v x ~ [ - c ,  c ] l _ v e J ~ ,  , }l 

= m a x  sup { V x e [ - - C , C ] E G f f ( - - , d A , A ; E ) - I - - 2 ~ . v ) ~ A ( y ) }  (15) 
.tEA Vy, y~x  y~A 

If C~ = C + e  for ~>0,  define modified potentials V+ by 

= vv, 
( V ~ ) x  ~+_C1, y = x  

Then, by standard arguments ~4~ 

A,A;E I { v x e [ - c , c ] l v e ~  }1 
<. N(E;  - A A,A;E "J7 U - -  ) - -  N(E; - A ~,A;E + _V + ) 

In this equation N(E; T) signifies the number of eigenvalues of a self- 
adjoint operator T less than or equal to E. Moreover, as V > -C1 and 
V+ < C1, 

N(E; -- A A,A;e + _V_ ) <~ N(E;  -- A A,A:E-- Cx) 

N(E; - -A A,A, E -  V+ ) >~ N(E;  - -A A,A;E + C~) 
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So 

I{v~e I - c ,  c] I_ve J U ; q l  

<~ N(E; - A,~,A;e -- C~ ) - N(E; - A A,A;e + C, ) 

or equivalently 

I{v~e I--C, c]  [ ve y~ ,*ql  

<~ N ( E  + C~ ; -Z~A,A;E) -- N ( E -  C~ ; - A  a,me) (16) 

SO it suffices to bound the number of eigenvalues of the operator --AA,a;e 
contained in the interval [ E -  C~, E +  C~]. This bound must be uniform in 
the choice of { 1/~ }x ~ A \ A- 

In the one-dimensional case such a bound may be found by explicit 
solution of the eigenvalue equation 

( - -A  A,A;e-- 2)~'=O (17) 

in the domain ~E, where ~L- is specified by { I/~}.~A \A, or equivalently (if 
= [a, b])  by homogeneous linear boundary conditions 

c~, O(a) + c~2~fi'(a ) = 0 
(18) 

fll ~l(b) -~ f l 20 ' (b )  = 0 

for some el,  c~2, /3~, /32 depending on { Vx} .v~A\A,  The solution 

A sin x + B cos  x 

to (17) can be made to satisfy the boundary conditions (18) only if 

t a n ( b - a )  xfi2+ (ct2fl'-~ el/32) N~__ 
r - 0  (19) 

The number of solutions 2 ~ E of (18) within any compact interval is boun- 
ded uniformly in c~ l, ~2, /32, /32, namely in {Vx}x~AXA. In particular, the 
number of eigenvalues in rE, - C 1 ,  E +  C1] is so bounded by some con- 
tinuous k(E).  

If this E-dependent k is substituted into (16), the majorization of 
Theorem 2' results. The bounding constant cp(C, E) will equal 
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Note  that our  cont inuum restriction to d =  1 arose only from the need 
for the bound  (15) on k to be finite. This finiteness follows by explicit com- 
putat ion only if d = 1. 

A P P E N D I X  A. T H E  P R O O F  OF L E M M A  3 

If 1 -G< k, l ~< p, write 12k~ = ( V, ..... I9~,..., VI,-", Vp.) ff ~ P -  2. By changing 
variables, the surface integral 

f~ O, ~(vj) g(y) UA 
j =  

.i@k,I 

(m~ + ms 2) - 1/2 g(_V) f(Vs<) f(V,) dl (A1) 

in which Skt := {(Vk, V t ) ~ 2 1 _ V e S }  is a plane curve in N2, dl is length 
measure, and the factor ~,~2 _L v~2]-- 1/2 arises as a Jacobian. By assumption \ " ' k  / "~l ) 
( rn  2 + m 2) - 1 / 2  ~ ( 2 ~ 4 ) -  1/2. 

Moreover ,  Skt intersects any line parallel to either coordinate  axis in 
R2 no more  than k times. So Lemma 1 applied to (A1) proves 

p P fs Ol fi(Vs) g(V)dA ,.< (2fl4) -u2 Ilglloo Ilfkll2 Ilfsll2 ~ llfjlll 
] j =  l 

j~k , l  

(A2) 

The choice of k and I in (A2) was arbitrary,  so (P) bounds result. One 
may interpolate among them; the following p =  3 case will serve to 
illustrate the process. Define a multilinear map T: x 3 L ~ c~ L2(~)  ~ C by 

3 

j =  

Then (A2) states that  

IT(fl,f2,f3)l ~-< (2fl4) - m  Ilgl[~o {Ifl{[~ I[fzlI2 [If3[12 (A3) 

and 

I :r (L,  f2 ,  f3)l  ~ (2/~4) -~/2 IIg{1 ~ IIA[12 II f2tl i IIAII2 

For  f2,  f3 fixed, consider the adjoint  map: 

T': C x L 1 ~ L2(~)  x LI(~R) c~ L2([~)  ~ L ~176 ~ Lz([R)  

(A4) 
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It must  satisfy 

IIT'(z, f2,f3)ll~ <~ (2fl4) -1/2 IzI Itf2112 IIf3112 Ilgll~ 

It T'(z, f2, f3)[l 2 ~< (2/1 4) -,/2 iZ I Jl f2JI l II f3112 Ilgll 

The Riesz-Thorin Theorem ~4) implies 

I[ T'(z, f2, f3)ll a <~ (2/1 4) - 1/2 ]z] I] f2 ]1 4/3 }1 f3 LJ 2 I] gl] co 

which implies 

[ T(fl ,  f2, f3)l <~ (2/14) - ,/2 II f ,  II 4/3 II f2 II 4/3 II f3112 II g II 

Similarly, 

(A5) 

IT( f , , f2 , f3) l  ~< (2/14) -~/2 15f~114/3 ]1f2112 llf3114/3 IIg{l~o (A6) 

Just as we interpolated between (A3) and (A4) to get (A5), so can we 
interpolate between (A5) and (A6) to obtain 

IT(A,  f2, f3)J ~< (2fl4) -1/2 IIA114/3 llfells/s IIf3]Is/5 IJgll~ 

An obvious limit argument  involving further interpolations proves 

[T( f l , f z , f3 ) l  ~ (2fl4) -1/2 I]f21[3/2 ][f2J13/2 I[f3]13/2 ]Jg]l~ (A7) 

Choosing f l  = f2 = f3 = f in (A7) yields 

[ T ( f , f , f ) l  <~ (2fl4) - ' /2 11fr IlgIJ~ 

as desired. For  p > 3 one can similarly deduce 

p 
lT(fx,...,fp)l <~ (2/14) - ' /2 IIgJl~ l-I [tfjHp, 

j= t  

so that Lemma 3 follows. | 

APPENDIX  B. THE PROOF OF L E M M A  4 

In effect, one must prove that if ~ ~ 12(A) is an eigenfunction of HA 
with eigenvalue E, there must exist p elements of Ao ~ A at which J~kl is 
large, "large" having a meaning uniform in { Vy }y~ A. The shape of Ao, i.e., 
A'o(p), is to be chosen to ensure this. 

Finding such a A'o(p) is not  a trivial matter, as a simple example 
should make clear. Take d =  2 and A o a square in 77 2, e.g., [1, L ]  2. Even in 
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the case V = 0  (so that H =  - A )  such a A o fails to satisfy the conditions of 
Lemma 2 for any p >~ 2. To see this, suppose ~PAo(X) were defined on Ao to 
be 

1/,~/-2, x = (1, 2) 

- 1 / , f S ,  x = (2 ,  l )  

0, otherwise 

If A were a square centered on and properly containing Ao, OA0 could 
easily be extended to OA, an eigenfunction of HA with zero eigenvalue. But 
t ~ ( x )  would be nonzero at only two values of x E A0. 

The familiar polyhedra in Y d are unsuitable candidates for A'o(p) 
because their boundaries are too jagged. The following adjacency condition 
on A; will prove sufficient for our needs, however. 

D e f i n i t i o n .  A set 5 e ~ Z d is said to have property P(q, d) if for 
every T c  5f, ITI ~<q, there exists z e 5~\05~\T such that z is adjacent to 
one and only one element of T. 

Remark. x, y e Y  a are said to be adjacent if ] x - y l  = 1. (This 
definition of adjacency is ultimately due to the choice of - A  as unpertur- 
bed Hamiltonian.) 05f is defined to be the set of elements of 5g adjacent 
to 2d\SP. 

Lemma B1. If a finite set A'o(p)~ E- u has property P ( p - 1 ,  d), it 
will satisfy the requirements of Lemma 4. 

Proof. If Ao is congruent to A'o(p), consider the restricted eigen- 
function ~AQ of Lemma 4. By definition it satisfies 

E 
y E A o  

I x  - y l  = 1 

4, Ao(y) + [ Vx - E] ,/, Ao(X) = o 

i f x ~ 0 A  o. We have E~ [ - C - 2 d ,  C + 2 d ] ,  V : , - E ~  [ - 2 C - 2 d ,  2 C + 2 d ]  
for all x e Ao. 

Let x~ ~ Ao be the element at which ]~A01 takes its maximum value. (If 
there is more than one, choose one arbitrarily.) Note that [~A0(xl)[ >t 
]A'o(p)1-1/2. By assumption there exists y2eAo\OA o adjacent to Xl, as 
follows it T =  T 1 := {xl}. The triangle inequality applied to (10) implies 
that either: 

(i) IqsA0(y2) I >~ (2d) -1(2C+ 2d) -1 LqSA0(Xl)l; or 

(ii) ItPAo(Y'z)L >~ (2d) -1 IqSAo(Xx)l for some y~ #Xl  adjacent to Y2. 
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If (i), let x2 := Y2. If (ii), let x2 := y~. In either case 

I~,A0(x2)l~>(2d) 1(2C + 2d) l l~, Ao(Xl)l >~ ( 2 d ) - l ( 2 C  + 2 d ) - l  lA'o(p)] -l/2 

By induction one may generate an ordered set Tp= {xl,..., Xp} of 
elements of Ao such that 

I~pA0(Xk+~)l /> ( 2 d ) - ~ ( Z C + 2 d )  -~ ICA0(Xk)t, l <<.k<~p- 1 

If 
/~p := (2d) - P(2C + 2d)-P ]A'o(p)l -1/2 

then Lemma B1 is proven. | 

By Lemma B1, to prove Lemma 3, it suffices to construct a finite set 
A'o(p) c Z a with the property P(p  - 1, d). The inductive construction I shall 
use is simple, but yields a A'o(p) rather larger than necessary. 

Defini t ion.  If Y c 2 ~, define 0(5 P) := Y\~?5 p. One writes o2(5 ~ for 
(SP\~?Y)\c?(Se\c~,9~), etc. By o~ P) is meant Y itself. 

Def in i t ion .  If 5 p c 2 a, define Eq.~(5 ~) ~ 7/J+ 1 to be the set 

{(x, y ) e Y J x Z l x e S P a n d  lY] ~<q-  1, or_xEol>' l -q+l(~9~ 

and q~< ]Yl < ~ q + k -  1} 

Remork  1. Eq,k(~ O~) may be thought of as a cylinder with base 5 P and 
height 2 q -  1, capped on either end by truncated cones of height at most k. 
The top surfaces of these truncated cones are o~(Se), unless ok(5 p) is empty. 

Romork  2. o r o Eq,k =- E#.~ _~ o o r for all r <~ k. 

k e m m a  B2. Let 5 P c Z  a. Suppose that o~(~) has the property 
P(q, d) for all 0 ~< r ~< 2 q -  2 and that o 2q- ~(5 p) is nonempty. Then for all 
k >~ 2 q -  1, Eq.k(5 P) c 2 d+ ~ has the property P(q, d +  1). 

This lemma may be used inductively to construct, for all d, finite sets 
A'o(p) c Z a with the desired property P ( p -  1, d). The following will serve 
to illustrate the process; indeed, to begin the induction on d. 

Denote by I~ an interval of length 1 in Z. By examination, it has the 
property P(q, 1) for all q < ~ l / 2 - 1 ,  i.e., /~>2q+2. As Or(It)=It_zr ,  O~(It) 
has the property P(q, 1) for all r <~ l / 2 -  q - 1 .  Hence, by Lemma B2, if 
l / 2 - q - l > > . 2 q - 2 ,  i.e., 1>~6q-2 ,  then Eq, k(]t) c ~_  2 will have property 
P(q, 2) for all k ~> 2 q -  1. 

Moreover, as 

OSEq,k( Ii) = Eq, k_ ,( o'I,) = Eq.~ sI,_ 2, 

822/48/3-4-6 



444 Maier  

then oS(Eq_g, It) c ~2 will have property P(q, 2) if 

l -  2s >~ 6q - 2, i.e., s <~ l/2 - 3q + l 

k -  s >~ 2 q - 1 ,  i.e., k >~ s + 2 q - 1  

In particular, oS(Eq_k, It) will have property P(q, 2) for all s <~2q- 2 if 

2 q - 2 < ~ 1 / 2 - 3 q + l ,  i.e., l>~10q-6  

k > ~ ( 2 q - 2 ) + 2 q - 1 ,  i.e., k > ~ 4 q - 3  

So, by Lemma B2, Eu.k2Eq,~ltc Z 3 will have property P(q, 3) if 

1~> 10q--6, k l > ~ 4 q - 3 ,  k2>~2q- I 

And so forth. 
In general, by induction on d, one has that 

Eq,kd_~ Eq.ka_2" "" Eq.k2Eqjcl [l ~ ~d 

has property P(q, d) if 

l>~4d(q-  1 ) - 2 q + 6  

k j > ~ l + 2 ( q - 1 ) ( d - j ) ,  l<<.j<~d-1 

One may choose A ' o ( p ) c Y  a to be such a set Eq, k~ ~ ...Eq.k,I/, if q = p - -  l. 
By Lemma B 1, it will satisfy the conditions of Lemma 3. | 

It only remains to prove Lemma B2, which made possible the induc- 
tive step in the construction of A'o(p). 

Proo( of  Lemma B2. I shall show that for any q-element subset 
T c  Eq,k(5 ~) there exists z eEq,~(Se)\SEq,g(SP)\T, i.e., z~o(Eq.g)\  T, such 
that z is adjacent to one and only one element of T. So Eq,k(~ a) will have 
property P(q, d + 1 ). 

By the definition of adjacency, one may without loss of generality 
assume that T is "next-nearest-neighbor connected," i.e., that one does not 
have T =  T1u T 2 and I x l - x 2 l  > ~  for all Xl~ T1, x2~ T2. This 
assumption has strong consequences. The "cylinder" of Eq,k(5 a) ~ 2U + 
(i.e., 5" • l- -- q + 1, q -- 1 ] ) has vertical height 2q - 1, and each "cap," e.g., 

{(_x, y ) l xeoY-q+x(Se ) ,  y~  I-q, q -  1 + k ] }  

by assumption has vertical height >~2q-1. As IT[ = q  and T is next- 
nearest-neighbor connected, one has immediately that: 
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(i) T cannot include sites from both caps. 

(ii) If T contains sites from the cylinder, it cannot include sites from 
the portion of a cap with [Yt ~>3q-2 .  In particular, it will con- 
tain none from the top surface of the cap, the magnitude of the y 
coordinate of which is at least 3 q - 2 .  

For T cannot extend more than 2 q -  1 units in the vertical direction. 
Hence, one or the other of the following possibilities must be true: 

I. T is a subset of a single cap. 

II. T is a subset of the union of the cylinder and a single cap, but 
includes no sites from the top surface of the cap, or indeed any 
with [y[ ~>3q-2 .  

I shall treat these two cases in turn. In both cases, write T =  {(_x~, Yt)l 
l<~l<~q). 

Case I. Suppose that T is a subset of the upper cap, i.e., of 

{(x, y)l_x~o-v-q+i(Y), y~ [q, q + k -  1]} 

The case of the lower cap is similar. Let (_xt, Yt) be the element of T with 
the least value of y; if more than one element has this value for its y coor- 
dinate, choose one arbitrarily. Define z := (_x~, Yt-1)EEq,k(Se)  �9 Then z~ 
o(Eq,~(SP))\T, and z is adjacent to one and only one element of T, namely 
(_xt, yz). These are the desiderata of property P(q, d+ 1). 

Case H. Suppose that T is a subset of the union of the upper cap and 
the cylinder; the case of the lower cap and the cylinder is similar. Then for 
all 1 <~l<~q, Yt lies between - q +  1 and 3 q - 3 .  Denote by (_x m, Ym) the 
element of T with the largest value of y, and define T ' : =  
{_X/] --'Y1 ~ O y m -  q + 1(~tT) }" The set T' is nonempty, for it contains _Xm. 

As remarked, Ym ~ 3q -- 3. Hence Ym -- q + I ~< 2q -- 2, so T'  c o r ( J )  for 
some r ~< 2 q -  2. By assumption, there exists _z E Or(~)\C3Or(5 P) such that z 
is adjacent to exactly one element of T', say _x t. Therefore 
(x, y,)E Eq.k(SP)\T is adjacent to exactly one element of T, namely (x,, y,). 
Moreover, as zq~?o'(5 ~) and y , ~ 3 q - 3 ,  (z,y,)r So (_z,y,)s 
Eq,~(Se)\OEq.~(5")\T and (z ,y , )  will serve as the desired element 
z ~ Eq,~(6e). II 

APPENDIX  C. THE PROOF OF L E M M A  5 

The p =  1 case of Lemma 5 is trivially true. One chooses  A~(1)cPY to 
be a singleton, and tip = l. 
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In general, elementary integral calculus suffices to prove that an inter- 
val of p sites will serve as A'o(p). The following argument is simple, but 
yields a minorizing constant tip far smaller than optimal. 

If 0 is an eigenfunction of Ha with eigenvalue E, it satisfies the 
differential equation - 0 " +  [ V ( x ) - E l 0  = 0. By integration by parts, for 
all x ~ A such that Ix - c~, x + a]  c 

O(x )  - �89  - ~) - 1 0 ( x  + ~) 

= - �89  [ v (~)  - E ]  O(z)  - [ v ( z )  - E3 0(~)  

(el) 

As I V ( y ) -  El ~< [El + C, the Cauchy-Schwartz inequality implies that the 
right-hand side is bounded by ~1/2[C+ IE[] 110112,~ . . . . .  +~3, if 11'112 denotes 
L 2 norm on an interval. 

Let I~, I> 13 c A o be successive intervals of length e. Then this bound 
implies 

[O(x)- �89 <~cd/2[C+ IEI] IIOII2,E . . . . . .  +=3 (C2) 

for all x e 12. Taking the supremum of (C2) over x e 12 yields 

110 ~/2-�89 ~/1-�89 [I211~ 

<~'/2FC+ [El]Ill0 [/1112 -~ 110// ~'I2112+ 110 {'I3[12] (c3) 

in which the L p norms are understood to apply to functions defined on 
intervals of length e. But as such L p norms satisfy II.L[2<~ I/2 I[ 11oo, (C3) 
implies that 

]10 [ '12- �89 [ '11-�89 ]'I3112 

~<~[C+ IEI]I-H0 V/lkl2+ kl0 [I2112+ [10 V I31j=] 

~<6~[c+  IEI] max{It0 [12112, 11�89 [I~H2, 11-120 PI31t2} (C4) 

L e m m a  C1. If It ,  12, [ 3 ~ A  are adjacent intervals of length 
~ <  1 8 - L [ C +  [El] -~, then 

max{l]O ]'12112, II~ [13112} >~6 t llO ['Ili[2 

max{IL0 ~12[12, Ill// ~11112}~>6 IH0 [13112 

Proof. By the triangle inequality applied to (C4). | 
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L e m m a  5 now follows f rom L e m m a  C1 by induc t ion  on p, if one 

decomposes  the intervals  {A(x ) }x~A  of A into subintervals  of  length ~ <  
18 l [ C +  [EJ] -1. One  finds f l p ~ 6 - p / 2 ~ 6  .9pEc+lejl. | 
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